Bactris gasipaes (Arecaceae), also known as peach palm, was domesticated by Amazonian Indians and is cultivated for its fruit and heart-of-palm, a vegetable grown in the tree's inner core. Currently, the conservation of this species relies on in situ conditions and field gene banks. Complementary conservation strategies, such as those based on in vitro techniques, are indicated in such cases. To establish an appropriate cryopreservation protocol, this study aimed to evaluate the ultrastructural features of B. gasipaes embryogenic cultures submitted to vitrification and subsequent cryogenic temperatures. Accordingly, somatic embryo clusters were submitted to Plant Vitrification Solution 3 (PVS3). In general, cells submitted to PVS3 had viable cell characteristics associated with apparently many mitochondria, prominent nucleus, and preserved cell walls. Cells not incubated in PVS3 did not survive after the cryogenic process in liquid nitrogen. The best incubation time for the vitrification technique was 240 min, resulting in a survival rate of 37 %. In these cases, several features were indicative of quite active cell metabolism, including intact nuclei and preserved cell walls, an apparently many of mitochondria and lipid bodies, and the presence of many starch granules and condensed chromatin. Moreover, ultrastructure analysis revealed that overall cellular structures had been preserved after cryogenic treatment, thus validating the use of vitrification in conjunction with cryopreservation of peach palm elite genotypes, as well as wild genotypes, which carry a rich pool of genes that must be conserved.