Under nutritional deprivation caused by prolonged culture, actively growing cells prepare to enter stationary phase. We showed here that Sds23/Psp1/Moc1 was phosphorylated by both cAMP-dependent kinase and stress-activated MAP kinase Sty1 upon entry into stationary phase. Overexpression of the phosphorylation-defective mutant Sds23/Psp1/Moc1 induced cell death in prolonged culture and blocked re-entry into the cell division cycle. These phosphorylations are likely to be required for cell survival during stationary phase and for binding of Ufd2, a Schizosaccharomyces pombe homologue of multi-ubiquitin chain assembly factor E4. Deletion of the Ufd2 gene and overexpression of Sds23/Psp1/Moc1 increased cell viability in prolonged stationary phase. These results suggested that Ufd2 induces cell death in prolonged nutrient deprivation, that Sds23/Psp1/Moc1 may be a target protein of the ubiquitin-fusion degradation pathway for regulation of cell viability under this stress condition, and that Sty1 and PKA activity in stationary phase is essential for interaction between Sds23/Psp1/Moc1 and Ufd2.
Keywords: Schizosaccharomyces; Sds23/Psp1/Moc1; Sty1; stationary phase.
Copyright © 2013 John Wiley & Sons, Ltd.