Photochromic diarylethenes (DAEs) are among the most promising molecular switching systems for future molecular electronics. Numerous derivatives have been synthesized recently, and experimental quantum yields (QYs) have been reported for two categories of them. Although the QY is one of the most important properties in various applications, it is also the most difficult property to predict before a molecule is actually synthesized. We have previously reported preliminary theoretical studies on what determines the QYs in both categories of DAE derivatives. Here, reflecting theoretical analyses of potential energy surfaces and recent experimental results, a rational explanation of the general guiding principle for QY design is presented for future molecular design.