Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112) inhibits pancreatic cancer growth in mice

PLoS One. 2013 May 1;8(5):e61532. doi: 10.1371/journal.pone.0061532. Print 2013.

Abstract

New agents are needed to treat pancreatic cancer, one of the most lethal human malignancies. We synthesized phospho-valproic acid, a novel valproic acid derivative, (P-V; MDC-1112) and evaluated its efficacy in the control of pancreatic cancer. P-V inhibited the growth of human pancreatic cancer xenografts in mice by 60%-97%, and 100% when combined with cimetidine. The dominant molecular target of P-V was STAT3. P-V inhibited the phosphorylation of JAK2 and Src, and the Hsp90-STAT3 association, suppressing the activating phosphorylation of STAT3, which in turn reduced the expression of STAT3-dependent proteins Bcl-xL, Mcl-1 and survivin. P-V also reduced STAT3 levels in the mitochondria by preventing its translocation from the cytosol, and enhanced the mitochondrial levels of reactive oxygen species, which triggered apoptosis. Inhibition of mitochondrial STAT3 by P-V was required for its anticancer effect; mitochondrial STAT3 overexpression rescued animals from the tumor growth inhibition by P-V. Our results indicate that P-V is a promising candidate drug against pancreatic cancer and establish mitochondrial STAT3 as its key molecular target.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Apoptosis
  • Cell Line, Tumor
  • Cimetidine / pharmacology
  • Drug Synergism
  • Female
  • Humans
  • Membrane Potential, Mitochondrial / drug effects
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Mitochondria / drug effects
  • Mitochondria / metabolism
  • Molecular Targeted Therapy
  • Organophosphates / pharmacology*
  • Pancreatic Neoplasms / drug therapy*
  • Pancreatic Neoplasms / pathology
  • Pancreatic Neoplasms / prevention & control
  • Protein Transport / drug effects
  • Reactive Oxygen Species / metabolism
  • STAT3 Transcription Factor / metabolism*
  • Signal Transduction / drug effects
  • Tumor Burden / drug effects
  • Valproic Acid / analogs & derivatives*
  • Valproic Acid / pharmacology
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • MDC-1112
  • Organophosphates
  • Reactive Oxygen Species
  • STAT3 Transcription Factor
  • STAT3 protein, human
  • Valproic Acid
  • Cimetidine