Versatile nanocarrier systems facilitating uptake of exogenous proteins are highly alluring in evaluating these proteins for therapeutic applications. The self-assembly of an efficient nano-sized protein transporter consisting of three different entities is presented: A streptavidin protein core functioning as an adapter, second generation polyamidoamine dendrons for facilitating cell uptake as well as two different therapeutic proteins (tumor suppressor p53 or pro-apoptotic cytochrome c as cargo). Well-defined dendrons containing a biotin core are prepared and display no cytotoxic behavior upon conjugation to streptavidin. The integration of biotinylated human recombinant p53 (B-p53) into the three component system allows excellent internalization into HeLa, A549 and SaOS osteosarcoma cells monitored via confocal microscopy, immunoblot analysis and co-localization studies. In addition, the conjugation of B-p53 to dendronized streptavidin preserves its specific DNA-binding in vitro, and its delivery into SaOS cells impairs cell viability with concomitant activation of caspases 3 and 7. The versatility of this system is further exhibited by the significant enhancement of the pro-apoptotic effects of internalized cytochrome c which is analyzed by flow cytometry and cell viability assays. These results demonstrate that the "bio-click" self-assembly of biotinylated dendrons and proteins on a streptavidin adapter yields a stable supramolecular complex. This efficient bionanotransporter provides an attractive platform for mediating the delivery of functional proteins of interest into living mammalian cells in a facile and rapid way.
Keywords: biohybrids; dendronized proteins; p53 and cytochrome c delivery; streptavidin adapters; supramolecular drugs.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.