Spontaneous slow oscillations occur in cerebral hemodynamics and blood pressure (BP), and may reflect neurogenic, metabolic or myogenic control of the cerebral vasculature. Aging is accompanied by a degeneration of the vascular system, which may have consequences for regional cerebral blood flow and cognitive performance. This degeneration may be reflected in a reduction of spontaneous slow oscillations of cerebral hemodynamics and BP. Therefore, we aimed to establish the dependency of slow oscillations of cerebral hemodynamics and BP on the factors age and cognitive load, by using functional near-infrared spectroscopy (fNIRS). Fourteen healthy young (23-32 years) and 14 healthy older adults (64-78 years) performed a verbal n-back working-memory task. Oxygenated and deoxygenated hemoglobin concentration changes were registered by two fNIRS channels located over left and right prefrontal cortex. BP was measured in the finger by photoplethysmography. We found that very-low-frequency oscillations (0.02-0.07 Hz) and low-frequency oscillations (0.07-0.2 Hz) of cerebral hemodynamics and BP were reduced in the older adults compared to the young during task performance. In young adults, very-low-frequency oscillations of cerebral hemodynamics and BP reduced with increased cognitive load. Cognitive load did not affect low-frequency oscillations of the cerebral hemodynamics and BP. Transfer function analysis indicated that the relationship between BP and cerebral hemodynamic oscillations does not change under influence of age and cognitive load. Our results suggest aging-related changes in the microvasculature such as declined spontaneous activity in microvascular smooth muscle cells and vessel stiffness. Moreover, our results indicate that in addition to local vasoregulatory processes, systemic processes also influence cerebral hemodynamic signals. It is therefore crucial to take the factors age and BP into consideration for the analysis and interpretation of hemodynamic neuroimaging data.
Keywords: BOLD; Cerebral autoregulation; Near infrared spectroscopy; Spontaneous oscillations; Vasomotion; Working memory.
Copyright © 2013 Elsevier Inc. All rights reserved.