A study on the PM2.5 pollution and aerosol optical properties in haze-fog days was carried out from Sep. 1st to Dec. 7th, 2011 in Beijing area by using PM2.5 concentration, aerosol scattering coefficient (sigma sca) and absorption coefficient (sigma abs) measured under urban and rural environment. The effect of weather condition on the PM25 pollution and aerosol optical properties was discussed as well. The results showed that the PM2.5 concentration, sigma sca and sigma abs, were evidently higher in haze-fog days than those in non-haze-fog days. The average PM2.5 concentrations in haze-fog days with values of 97.6 microg m-3 and 64.4 microg.m-3 were as 3.3 and 4.8 times as those in non-haze-fog days at urban and rural stations, respectively. The higher PM2.5 concentration in urban area resulted in the more frequent fog and haze phenomena than that in rural area. The PM25 concentration, sigma sca, and sigma abs were significantly higher in urban area than that in rural area in mist days, while relatively close in mist-haze days. This difference suggested that the effect of regional transport of pollution was relatively evident in mist-haze days but weak in mist day. In fog days the sigma sca showed no evident difference between urban and rural area, and was the highest in all types of fog and haze weather. The scattering property of aerosol was the strongest in fog days. The different weather conditions resulted in various characteristics of spatial distribution of PM2.5 concentration, sigma sca and sigma abs, as well as the strength of PM2,5 pollution and aerosol extinction. The pollutants transported by the strong southwest wind above the boundary layer and subsided in the boundary layer companying with the local accumulation of pollutants due to the weak diffusion resulted in the most serious haze-fog episode with the strongest PM2.5 pollution and aerosol extinction.