During mouse antral follicle development, the oocyte chromatin gradually transforms from a less condensed state with no Hoechst-positive rim surrounding the nucleolus (NSN) to a fully condensed chromatin state with a Hoechst-positive rim surrounding the nucleolus (SN). Compared with SN oocytes, NSN oocytes display a higher gene transcription activity and a lower rate of meiosis resumption (G2/M transition), and they are mostly arrested at the two-cell stage after in vitro fertilization. To explore the differences between NSN and SN oocytes, and the maternal factors required for oocyte developmental competence, we compared the whole-transcriptome profiles between NSN and SN oocytes. First, we found that the NSN and SN oocytes were different in their metabolic pathways. In the phosphatidylinositol signaling pathway, the SN oocytes tend to produce diacylglycerol, whereas the NSN oocytes tend to produce phosphatidylinositol (3,4,5)-trisphosphate. For energy production, the SN oocytes and NSN oocytes differed in the gluconeogenesis and in the synthesis processes. Second, we also found that the key genes associated with oocyte meiosis and/or preimplantation embryo development were differently expressed in the NSN and SN oocytes. Our results illustrate that during the NSN-SN transition, the oocytes change their metabolic activities and accumulate maternal factors for further oocyte maturation and post-fertilization embryo development.
Keywords: NSN; SN; maternal effect; meiosis; oocyte.