Metabolic engineering of Candida utilis for isopropanol production

Appl Microbiol Biotechnol. 2013 Jul;97(14):6231-9. doi: 10.1007/s00253-013-4964-0. Epub 2013 May 15.

Abstract

A genetically-engineered strain of the yeast Candida utilis harboring genes encoding (1) an acetoacetyl-CoA transferase from Clostridium acetobutylicum ATCC 824, (2) an acetoacetate decarboxylase, and (3) a primary-secondary alcohol dehydrogenase derived from Clostridium beijerinckii NRRL B593 produced up to 0.21 g/L of isopropanol. Because the engineered strain accumulated acetate, isopropanol titer was improved to 1.2 g/L under neutralized fermentation conditions. Optimization of isopropanol production was attempted by the overexpression and disruption of several endogenous genes. Simultaneous overexpression of two genes encoding acetyl-CoA synthetase and acetyl-CoA acetyltransferase increased isopropanol titer to 9.5 g/L. Moreover, in fed-batch cultivation, the resultant recombinant strain produced 27.2 g/L of isopropanol from glucose with a yield of 41.5 % (mol/mol). This is the first demonstration of the production of isopropanol by genetically engineered yeast.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 2-Propanol / metabolism*
  • Acetates / metabolism
  • Candida / genetics*
  • Candida / metabolism*
  • Fermentation
  • Industrial Microbiology
  • Metabolic Engineering

Substances

  • Acetates
  • 2-Propanol