Using allometric procedures to substantiate the plastochrone method for eelgrass leaf growth assessments

Theor Biol Med Model. 2013 May 16:10:34. doi: 10.1186/1742-4682-10-34.

Abstract

Estimation of leaf productivity in eelgrass (Zostera marina L.) is crucial for evaluating the ecological role of this important seagrass species. Although leaf marking techniques are widely used to obtain estimates of leaf productivity, the accuracy of these assessments, has been questioned mainly because these fail to account for leaf growth below the reference mark and also because they apparently disregard the contribution of mature leaf tissues to the growth rate of leaves. On the other hand, the plastochrone method is a simpler technique that has been considered to effectively capture growth in a more realistic way, thereby providing more accurate assessments of both above- and below-ground productivities. But since the actual values of eelgrass growth rates are difficult to obtain, the worth of the plastochrone method has been largely vindicated because it produces assessments that overestimate productivity as compared to estimates obtained by leaf marking. Additionally, whenever eelgrass leaf biomass can be allometrically scaled in terms of matching leaf length in a consistent way, the associated leaf growth rates can be also projected allometrically. In this contribution, we used that approach to derive an authentication of the plastochrone method and formally demonstrate that, as has been claimed to occur for leaf marking approaches, the plastochrone method itself underestimates actual values of eelgrass leaf growth rates. We also show that this unavoidable bias is mainly due to the inadequacy of single-leaf biomass assessments in providing a proxy for the growth of all leaf tissue in a shoot over a given interval. Moreover, the derived formulae give conditions under which assessments of leaf growth rates using the plastochrone method would systematically underestimate matching values obtained by leaf marking procedures. And, assessments of leaf growth rates obtained by using the present data show that plastochrone method estimations underestimated corresponding proxies obtained allometrically (27%), or through leaf marking (35%). Allometric projection is recommended as a simpler and more effective procedure to reduce the bias in eelgrass leaf productivity estimations that associates to the use of plastochrone methods.

MeSH terms

  • Plant Leaves / growth & development*
  • Zosteraceae / growth & development*