KIT receptor gain-of-function in hematopoiesis enhances stem cell self-renewal and promotes progenitor cell expansion

Stem Cells. 2013 Aug;31(8):1683-95. doi: 10.1002/stem.1419.

Abstract

The KIT receptor tyrosine kinase has important roles in hematopoiesis. We have recently produced a mouse model for imatinib resistant gastrointestinal stromal tumor (GIST) carrying the Kit(V558Δ) and Kit(T669I) (human KIT(T670I) ) mutations found in imatinib-resistant GIST. The Kit(V558Δ;T669I/+) mice developed microcytic erythrocytosis with an increase in erythroid progenitor numbers, a phenotype previously seen only in mouse models of polycythemia vera with alterations in Epo or Jak2. Significantly, the increased hematocrit observed in Kit(V558Δ;T669I/+) mice normalized upon splenectomy. In accordance with increased erythroid progenitors, myeloerythroid progenitor numbers were also elevated in the Kit(V558Δ;T669I/+) mice. Hematopoietic stem cell (HSC) numbers in the bone marrow (BM) of Kit(V558Δ;T669I/+) mice were unchanged in comparison to wild-type mice. However, increased HSC numbers were observed in fetal livers and the spleen and peripheral blood of adult Kit(V558Δ;T669I/+) mice. Importantly, HSC from Kit(V558Δ;T669I/+) BM had a competitive advantage over wild-type HSC. In response to 5-fluorouracil treatment, elevated numbers of dividing Lin(-) Sca(+) cells were found in the Kit(V558Δ;T669I/+) BM compared to wild type. Our study demonstrates that signaling from the Kit(V558Δ;T669I/+) receptor has important consequences in hematopoiesis enhancing HSC self-renewal and resulting in increased erythropoiesis.

Keywords: Erythroid progenitors; Hematopoietic stem cells; Self-renewal; Signal transduction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Growth Processes / physiology
  • Disease Models, Animal
  • Erythroid Cells / cytology
  • Erythroid Cells / metabolism
  • Female
  • Fluorouracil / pharmacology
  • Hematopoiesis / physiology*
  • Hematopoietic Stem Cells / cytology*
  • Hematopoietic Stem Cells / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Proto-Oncogene Proteins c-kit / genetics
  • Proto-Oncogene Proteins c-kit / metabolism*
  • Signal Transduction

Substances

  • Proto-Oncogene Proteins c-kit
  • Fluorouracil