The human hypothalamus is a small deeply located region placed at the crossroad of neurovegetative, neuroendocrine, limbic, and optic systems. Although deep brain stimulation techniques have proven that it could be feasible to modulate these systems, targeting the hypothalamus and in particular specific nuclei and white bundles, is still challenging. Our goal was to make a synthesis of relevant topographical data of the human hypothalamus, under the form of magnetic resonance imaging maps useful for mastering its elaborated structure as well as its neighborhood. As from 1.5 Tesla, Inversion-Recovery sequence allows locating the hypothalamus and most of its components. Spotting hypothalamic compartments is possible according to specific landmarks: the anterior commissure, the mammillary bodies, the preoptic recess, the infundibular recess, the crest between the preoptic and the infundibular recesses, the optical tract, the fornix, and the mammillo-thalamic bundle. The identification of hypothalamus and most of its components could be useful to allow the quantification of local pathological processes and to target specific circuitry to alleviate severe symptoms, using physical or biological agents.
Keywords: Brain mapping; hypothalamus; inversion-recovery sequence; magnetic resonance imaging; stereotaxy.