Soluble ST2, a modulator of the inflammatory response, in preterm and term labor

J Matern Fetal Neonatal Med. 2014 Jan;27(2):111-21. doi: 10.3109/14767058.2013.806894. Epub 2013 Nov 13.

Abstract

Objective: Intra-amniotic infection/inflammation (IAI) is causally linked with spontaneous preterm labor and delivery. The ST2L receptor and its soluble form (sST2) are capable of binding to interleukin (IL)-33, a member of the IL-1 superfamily. Members of this cytokine family have been implicated in the onset of spontaneous preterm labor in the context of infection. Soluble ST2 has anti-inflammatory properties, and plasma concentrations are elevated in systemic inflammation, such as sepsis, acute pyelonephritis in pregnancy and the fetal inflammatory response syndrome. The aims of this study were to examine: (1) whether amniotic fluid concentrations of sST2 change with IAI, preterm, and term parturition; and (2) if mRNA expression of ST2 in the chorioamniotic membranes changes with acute histologic chorioamnionitis in women who deliver preterm.

Method: A cross-sectional study was conducted to determine amniotic fluid concentrations of sST2 in: (1) women with preterm labor (PTL) who delivered at term (n=49); (2) women with PTL who delivered preterm without IAI (n=21); (3) women with PTL who delivered preterm with IAI (n=31); (4) term pregnancies not in labor (n=13); and (5) term pregnancies in labor (n=43). The amniotic fluid concentration of sST2 was determined by ELISA. The mRNA expression of ST2 in the chorioamniotic membranes of women who delivered preterm with (n=24), and without acute histologic chorioamnionitis (n=19) was determined by qRT-PCR.

Results: (1) Patients with PTL who delivered preterm with IAI had a lower median amniotic fluid concentration of sST2 compared to those with PTL who delivered preterm without IAI [median 410 ng/mL, inter-quartile range (IQR) 152-699 ng/mL versus median 825 ng/mL, IQR 493-1216 ng/mL; p=0.0003] and those with PTL who delivered at term [median 410 ng/mL, IQR 152-699 ng/mL versus median 673 ng/mL, IQR 468-1045 ng/mL; p=0.0003]; (2) no significant differences in the median amniotic fluid concentration of sST2 were observed between patients with PTL who delivered at term and those who delivered preterm without IAI (p=0.4), and between women at term in labor and those at term not in labor (p=0.9); (3) the mean mRNA expression of ST2 was 4-fold lower in women who delivered preterm with acute histologic chorioamnionitis than in those without this lesion (p=0.008).

Conclusions: The median sST2 amniotic fluid concentration and mRNA expression of ST2 by chorioamniotic membranes is lower in PTL associated with IAI and acute histologic chorioamnionitis than in PTL without these conditions. Changes in the median amniotic fluid sST2 concentration are not observed in preterm and term parturition without IAI. Thus, amniotic fluid sST2 in the presence of IAI behaves differently when compared to sST2 in the plasma of individuals affected by fetal inflammatory response syndrome, acute pyelonephritis in pregnancy, and adult sepsis. Decreased concentrations of sST2 in IAI are likely to promote a pro-inflammatory response, which is important for parturition in the context of infection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Amnion / chemistry
  • Amniotic Fluid / chemistry
  • Chorioamnionitis / metabolism*
  • Chorion / chemistry
  • Cross-Sectional Studies
  • Female
  • Humans
  • Interleukin-1 Receptor-Like 1 Protein
  • Interleukin-33
  • Interleukins / metabolism
  • Labor, Obstetric / metabolism*
  • Obstetric Labor, Premature / metabolism*
  • Parturition
  • Pregnancy
  • Premature Birth / metabolism
  • RNA, Messenger / analysis
  • Receptors, Cell Surface / analysis
  • Receptors, Cell Surface / genetics
  • Receptors, Cell Surface / physiology*
  • Retrospective Studies

Substances

  • IL1RL1 protein, human
  • IL33 protein, human
  • Interleukin-1 Receptor-Like 1 Protein
  • Interleukin-33
  • Interleukins
  • RNA, Messenger
  • Receptors, Cell Surface