Background: Supraventricular arrhythmias (junctional ectopic tachycardia [JET] and atrial tachyarrhythmias) frequently complicate recovery from open heart surgery in children and can be difficult to manage. Medical treatment of JET can result in significant morbidity. Our goal was to develop a nonpharmacological approach using autonomic stimulation of selective fat pad (FP) regions of the heart in a young canine model of open heart surgery to control 2 common postoperative supraventricular arrhythmias.
Methods and results: Eight mongrel dogs, varying in age from 5 to 8 months and weighting 22±4 kg, underwent open heart surgery replicating a nontransannular approach to tetralogy of Fallot repair. Neural stimulation of the right inferior FP was used to control the ventricular response to supraventricular arrhythmias. Right inferior FP stimulation decreased baseline AV nodal conduction without altering sinus cycle length. AV node Wenckebach cycle length prolonged from 270±33 to 352±89 ms, P=0.02. Atrial fibrillation occurred in 7 animals, simulating a rapid atrial tachyarrhythmias. FP stimulation slowed the ventricular response rate from 166±58 to 63±29 beats per minute, P<0.001. Postoperative JET occurred in 7 dogs. FP stimulation slowed the ventricular rate during postoperative JET from 148±31 to 106±32 beats per minute, P<0.001, and restored sinus rhythm in 7/7 dogs.
Conclusions: Right inferior FP stimulation had a selective effect on the AV node, and slowed the ventricular rate during postoperative JET and atrial tachyarrhythmias in our young canine open heart surgery model. FP stimulation may be a useful new technique for managing children with JET and atrial tachyarrhythmias.
Keywords: animal model surgery; atrial tachycardia; atrioventricular node; autonomic nervous system; fat pad stimulation; junctional ectopic tachycardia; pediatric.