The biological activities of six symmetrically substituted 2-methoxy-benzyl polymethylene tetraamines (1-4) and diphenylethyl polymethylene tetraamines (5 and 6) as N-methyl-D-aspartate (NMDA) receptor channel blockers, were evaluated in vitro and in vivo. Although all compounds exhibited stronger channel block activities in comparison to memantine in Xenopus oocytes voltage clamped at -70 mV, only compound 2 (0.4 mg/kg intravenous injection) decreased the size of brain infarction in a photochemically induced thrombosis model mice at the same extent of memantine (10mg/kg intravenous injection). Other compounds (1, 3, 4, 5 and 6) did not decrease the size of brain infarction significantly due to the limited injection doses. The present study suggests that compound 2 could represent a valuable lead compound to design low toxicity polyamines for clinical use against stroke.
Copyright © 2013 Elsevier Ltd. All rights reserved.