In mammals, nicotinamide (Nam) is biosynthesized from l-tryptophan (l-Trp). The enzymes involved in the initial step of the l-Trp→Nam pathway are l-Trp-2,3-dioxygenase (TDO) and indoleamine-2,3-dioxygenase (IDO). We aimed to determine whether tdo-knockout (tdo(-/-)) mice fed a diet without preformed niacin can synthesize enough Nam to sustain optimum growth. Wild-type (WT) and tdo(-/-) mice were fed a chemically defined 20% casein diet with or without preformed niacin (30 mg nicotinic acid/kg) for 28 d. Body weight, food intake, and liver NAD concentrations did not differ among the groups. In the groups of mice fed the niacin-free diet, urinary concentrations of the upstream metabolites kynurenine (320% increase, P < 0.0001), kynurenic acid (270% increase, P < 0.0001), xanthurenic acid (770% increase, P < 0.0001), and 3-hydroxyanthranilic acid (3-HA; 450% increase, P < 0.0001) were higher in the tdo(-/-) mice than in the WT mice, while urinary concentrations of the downstream metabolite quinolinic acid (QA; 50% less, P = 0.0010) and the sum of Nam and its catabolites (10% less, P < 0.0001) were lower in the tdo(-/-) mice than in the WT mice. These findings show that the kynurenine formed in extrahepatic tissues by IDO and subsequent enzymes can be metabolized up to 3-HA, but not into QA. However, the tdo(-/-) mice sustained optimum growth even when fed the niacin-free diet for 1 mo, suggesting they can synthesize the minimum necessary amount of Nam from l-Trp, because the liver can import blood kynurenine formed in extrahepatic tissues and metabolize it into Nam via NAD and the resulting Nam is then distributed back into extrahepatic tissues.