Many studies have showed that the radiation-attenuated cercariae (RAC) vaccine could induce the high protection of laboratory animals to resist the schistosoma infection by cellular and humoral mechanism. Here, we aimed to identify possible vaccine antigens by using specific IgG2 antibody from RAC-vaccinated pigs or vaccination and challenge pigs. The antigens from the schistosomal soluble worm antigen preparation (SWAP) recognized by the porcine IgG2 antibody were obtained using immunoprecipitation technique. These antigens were separated by 2-D electrophoresis, and 116 spots were successfully identified by MALDI-TOF MS from about 400 putative spots in gels. Among these spots, 113 spots could match to the Schistosoma japonicum. These identified proteins in four groups were classified by Gene Ontology (Go) database, and the mainly functions of these proteins were involved in binding, catalytic activity (thioredoxin peroxidase-2, et al.), signal transduction class (MAP Kinase, et al.), cell process (the heat shock 70-kDa protein 9B, et al.), and the intracellular component (tektin, et al.). Our methods suggested that it was possible to pull-down the interesting proteins recognized by specific antibodies. Our results may provide new clues for exploring the mechanism of high protection induced by RAC and shed some light on the research for anti-schistosomiasis japonica vaccine.