Simultaneous multislice excitation by parallel transmission

Magn Reson Med. 2014 Apr;71(4):1416-27. doi: 10.1002/mrm.24791. Epub 2013 May 28.

Abstract

Purpose: A technique is described for simultaneous multislice (SMS) excitation using radiofrequency (RF) parallel transmission (pTX).

Methods: Spatially distinct slices are simultaneously excited by applying different RF frequencies on groups of elements of a multichannel transmit array. The localized transmit sensitivities of the coil geometry are thereby exploited to reduce RF power. The method is capable of achieving SMS-excitation using single-slice RF pulses, or multiband pulses. SMS-pTX is demonstrated using eight-channel parallel RF transmission on a dual-ring pTX coil at 3 T. The effect on B(1)(+) homogeneity and specific absorption rate (SAR) is evaluated experimentally and by simulations. Slice-GRAPPA reconstruction was used for separation of the collapsed slice signals.

Results: Phantom and in vivo brain data acquired with fast low-angle shot (FLASH) and blipped-controlled aliasing results in higher acceleration (CAIPIRINHA) echo-planar imaging are presented at SMS excitation factors of two, four, and six. We also show that with our pTX coil design, slice placement, and binary division of transmitters, SMS-pTX excitations can achieve the same mean flip angles excitations at ∼30% lower RF power than a conventional SMS approach with multiband RF pulses.

Conclusion: The proposed SMS-pTX allows SMS excitations at reduced RF power by exploiting the local B(1)(+) sensitivities of suitable multielement pTX arrays.

Keywords: GRAPPA; SMS-pTX; parallel RF transmission; simultaneous multislice excitation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Brain / anatomy & histology*
  • Humans
  • Image Enhancement / instrumentation*
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / instrumentation
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / instrumentation
  • Imaging, Three-Dimensional / methods*
  • Magnetic Resonance Imaging / instrumentation
  • Magnetic Resonance Imaging / methods*
  • Phantoms, Imaging
  • Reproducibility of Results
  • Sensitivity and Specificity