The extant mammals have evolved highly diversified diets associated with many specialized morphologies. Two rare diets, termitophagy and vermivory, are characterized by unusual morphological and dental adaptations that have evolved independently in several clades. Termitophagy is known to be associated with increases in tooth number, crown simplification, enamel loss, and the appearance of intermolar diastemata. We observed similar modifications at the species level in vermivorous clades, although interestingly the vermivorous mammals lack secondarily derived tools that compensate for the dentition's reduced function. We argue that the parallel dental changes in these specialists are the result of relaxed selection on occlusal functions of the dentition, which allow a parallel cascade of changes to occur independently in each clade. Comparison of the phenotypes of Rhynchomys, a vermivorous rat, and strains of mice whose ectodysplasin (EDA) pathway has been mutated revealed several shared dental features. Our results point to the likely involvement of this genetic pathway in the rapid, parallel morphological specializations in termitophagous and vermivorous species. We show that diets or feeding mechanisms in other mammals that are linked to decreased reliance on complex can lead to similar cascades of change.
© 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.