We present, theoretically and experimentally, diffractionless optical beams displaying arbitrarily-shaped sub-diffraction-limited features known as superoscillations. We devise an analytic method to generate such beams and experimentally demonstrate optical superoscillations propagating without changing their intensity distribution for distances as large as 250 Rayleigh lengths. Finally, we find the general conditions on the fraction of power that can be carried by these superoscillations as function of their spatial extent and their Fourier decomposition. Fundamentally, these new type of beams can be utilized to carry sub-wavelength information for very large distances.