Highly reproducible bipolar resistance switching was recently demonstrated in a composite material of Pt nanoparticles dispersed in silicon dioxide. Here, we examine the electrical performance and scalability of this system and demonstrate devices with ultrafast (<100 ps) switching, long state retention (no measurable relaxation after 6 months), and high endurance (>3 × 10(7) cycles). A possible switching mechanism based on ion motion in the film is discussed based on these observations.