Psychopathic traits affect social functioning and the ability to make adaptive decisions in social interactions. This study investigated how psychopathy affects the neural mechanisms that are recruited to make decisions in the ultimatum game. Thirty-five adult participants recruited from the community underwent functional magnetic resonance imaging scanning while they performed the ultimatum game under high and low cognitive load. Across load conditions, high psychopathy scorers rejected unfair offers in the same proportion as low scorers, but perceived them as less unfair. Among low scorers, the perceived fairness of offers predicted acceptance rates, whereas in high scorers no association was found. Imaging results revealed that responses in each group were associated with distinct patterns of brain activation, indicating divergent decision mechanisms. Acceptance of unfair offers was associated with dorsolateral prefrontal cortex activity in low scorers and ventromedial prefrontal cortex activity in high scorers. Overall, our findings point to distinct motivations for rejecting unfair offers in individuals who vary in psychopathic traits, with rejections in high psychopathy scorers being probably induced by frustration. Implications of these results for models of ventromedial prefrontal cortex dysfunction in psychopathy are discussed.
Keywords: functional magnetic resonance imaging; psychopathy; ultimatum game; ventromedial prefrontal cortex.
© The Author (2013). Published by Oxford University Press. For Permissions, please email: [email protected].