Novel bicyclic[1,2,3]triazoles (4, 7, 11, 15) have been synthesized using a one-pot metal free strategy with high structural diversity as photoprotective agents, and their effect on UVA-induced senescence in human dermal fibroblast cells (FB) and the associated mechanism are delineated. 11d plus UVA can induce a decrease in reactive oxygen species (ROS) production and senescence-associated β-galactosidase (SA-β-gal) activity but an increase in adenosine triphosphate (ATP) synthesis and mitochondrial membrane potential (ΔΨmt). The mRNA levels of six senescence-associated genes, matrix metalloproteinase-1 (MMP-1), was decreased, while elastin, procollagen I type I, fibronectin, COL1α1, and tissue inhibitor of metalloproteinase-1 (TIMP-1) were increased. 11d plus UVA also decreased MMP-1 and increased TIMP-1 protein levels. Additionally, the thickness of the murine dorsal skin and epidermis, by UVA, was decreased by topical 11d treatment. Our results indicate that bicyclic[1,2,3]triazoles protect UVA-induced senescence-like characteristics in FB cells, which may provide potential prevention against photoaging.