Enhanced cardiomyogenic lineage differentiation of adult bone-marrow-derived stem cells grown on cardiogel

Cell Tissue Res. 2013 Sep;353(3):443-56. doi: 10.1007/s00441-013-1661-3. Epub 2013 Jun 15.

Abstract

The extracellular matrix (ECM) and its components are known to promote growth and cellular differentiation in vitro. Cardiogel, a three-dimensional extracellular matrix derived from cardiac fibroblasts, is evaluated for its cardiomyogenic-differentiation-inducing potential on bone-marrow-derived stem cells (BMSC). BMSC from adult mice were grown on cardiogel and induced to differentiate into specific lineages that were validated by morphological, phenotypic and molecular assays. The data revealed that the cardiogel enhanced cardiomyogenic and adipogenic differentiation and relegated osteogenic differentiation following specific induction. More importantly, increased cardiomyogenic differentiation was also observed following BMSC growth on cardiogel without specific chemical (5-azacytidine) induction. This is the first report of an attempt to use cardiogel as a biomaterial on which to achieve cardiomyogenic differentiation of BMSC without chemical induction. Our study suggests that cardiogel is an efficient extracellular matrix that enhances the cardiomyogenic differentiation of BMSC and that it can therefore be used as a scaffold for cardiac tissue regeneration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult Stem Cells / cytology
  • Adult Stem Cells / metabolism*
  • Animals
  • Bone Marrow Cells / cytology
  • Bone Marrow Cells / metabolism*
  • Cell Culture Techniques
  • Cells, Cultured
  • Extracellular Matrix / chemistry*
  • Gels / chemistry
  • Mice
  • Myocardium / cytology
  • Myocardium / metabolism
  • Myocytes, Cardiac / cytology
  • Myocytes, Cardiac / metabolism*
  • Regeneration

Substances

  • Gels