We have reported that compounds containing a biaryl linked unit (Ar-X-Ar') modulated Na(+) currents by promoting slow inactivation and fast inactivation processes and by inducing frequency (use)-dependent inhibition of Na(+) currents. These electrophysiological properties have been associated with the mode of action of several antiepileptic drugs. In this study, we demonstrate that the readily accessible (biphenyl-4-yl)methylammonium chlorides (compound class B) exhibited a broad range of anticonvulsant activities in animal models, and in the maximal electroshock seizure test the activity of (3'-trifluoromethoxybiphenyl-4-yl)methylammonium chloride (8) exceeded that of phenobarbital and phenytoin upon oral administration to rats. Electrophysiological studies of 8 using mouse catecholamine A-differentiated cells and rat embryonic cortical neurons confirmed that 8 promoted slow and fast inactivation in both cell types but did not affect the frequency (use)-dependent block of Na(+) currents.