CD evidence that the alternating purine-pyrimidine sequence poly[d(A-C).d(G-T)], but not poly[d(A-T).d(A-T)], undergoes an acid-induced transition to a modified secondary conformation

Nucleic Acids Res. 1990 Jul 25;18(14):4111-22. doi: 10.1093/nar/18.14.4111.

Abstract

Circular dichroism and UV absorption data showed that poly[d(A-C).d(G-T)] (at 0.01M Na+ (phosphate), 20 degrees C) underwent two reversible conformational transitions upon lowering of the pH. The first transition was complete at about pH 3.9 and resulted in an acid form of the polymer that was most likely a modified, protonated duplex. The second transition occurred between pH 3.9 and 3.4 and consisted of the denaturation of this protonated duplex to the single strands. UV absorption and CD data also showed that the separated poly[d(A-C)] strand formed two acid-induced self-complexes with pKa values of 6.1 and 4.7 (at 0.01M Na+). However, neither one of these poly[d(A-C)] self-complexes was part of the acid-induced rearrangements of the duplex poly[d(A-C).d(G-T)]. Acid titration of the separated poly[d(G-T)] strand, under similar conditions, did not show the formation of any protonated poly[d(G-T)] self-complexes. In contrast to poly[d(A-C).d(G-T)], poly[d(A-T).d(A-T)] underwent only one acid-induced transition, which consisted of the denaturation of the duplex to the single strands, as the pH was lowered from 7 to 3.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Circular Dichroism
  • Hydrogen-Ion Concentration
  • Nucleic Acid Conformation
  • Poly dA-dT*
  • Polydeoxyribonucleotides*
  • Spectrophotometry, Ultraviolet

Substances

  • Polydeoxyribonucleotides
  • Poly dA-dT
  • poly(dA-dC).poly(dG-dT)