Background: Effective recovery from functional impairments caused by traumatic brain injury (TBI) requires appropriate rehabilitation therapy. Multiple pathways are involved in secondary injury and recovery suggesting a role for multimodal approaches.
Objective: Here, we examined the efficacy of the anti-inflammatory agent minocycline and botulinum toxin (botox)-induced limb constraint with structured physical therapy, delivered alone or in combination, after a severe TBI produced by a controlled cortical impact in rats.
Methods: Minocycline was administered at 25 mg/kg daily for 2 weeks beginning 1 day after TBI or sham surgery. For constraint/physical therapy, botox-type A was injected into the nonaffected forearm muscle 1 day after injury and 2 weeks of physical therapy commenced at 5 days after injury. Functional evaluations were conducted 8 weeks after injury.
Results: Minocycline, either as a monotherapy or as combination treatment with botox/physical therapy significantly reduced impairments of spatial learning and memory in the water maze test, whereas botox/physical therapy reduced forelimb motor asymmetry and improved manual dexterity in the cylinder and vermicelli handling tests, A synergistic effect between the 2 treatments was observed when rats performed tasks requiring dexterity. Inflammation was attenuated in the peri-contusion cortex and hippocampus in all TBI groups receiving mono or combination therapies, though there was no significant difference in lesion size among groups.
Conclusion: These data provide a rationale for incorporating anti-inflammatory treatment during rehabilitation therapy.
Keywords: botox; constraint-induced movement therapy (CIMT); controlled cortical impact; glial fibrillary acidic protein (GFAP); microglia; rehabilitation.