Current prognostic indicators are imperfect predictors of outcome in men with clinically localized prostate cancer. Thus, tissue-based markers are urgently needed to improve treatment and surveillance decision-making. Given that shortened telomeres enhance chromosomal instability and such instability is a hallmark of metastatic lesions, we hypothesized that alterations in telomere length in the primary cancer would predict risk of progression to metastasis and prostate cancer death. To test this hypothesis, we conducted a prospective cohort study of 596 surgically treated men who participated in the ongoing Health Professionals Follow-up Study. Men who had the combination of more variable telomere length among prostate cancer cells (cell-to-cell) and shorter telomere length in prostate cancer-associated stromal (CAS) cells were substantially more likely to progress to metastasis or die of their prostate cancer. These findings point to the translational potential of this telomere biomarker for prognostication and risk stratification for individualized therapeutic and surveillance strategies.
Significance: In this prospective study, the combination of more variable telomere length among cancer cells and shorter telomere length in CAS cells was strongly associated with progression to metastasis and prostate cancer death, pointing to the translational potential for prognostication and risk stratifi cation for individualized therapeutic and surveillance strategies.