Zein nanofibrous membranes for sustained release have been prepared by coaxial electrospinning. Core-sheath structure has been successfully fabricated using zein as both the core and sheath component. Impact of solvent and solution concentration on the morphology of the resulting fibers was investigated. Allyltriphenylphosphonium bromide was used as a model drug to test the sustained release effect. The sustained release profile and the antimicrobial activity of the resulting membranes were investigated and compared with that of the single fluid electrospinning of zein/drug blended membrane. The ratio of the inner and outer feeding rates was found to influence the encapsulation of drugs, and in turn affect the sustained release effect of the resulting membranes. The coaxial electrospinning membrane can remarkably suppress the initial burst release of drugs by giving a releasing amount of 15% in the first 1 h when the inner/outer ratio was larger than 1:2. This drug-loaded zein membrane with preferable sustained release effect can be applied in many fields such as wound healing and packaging sector.