Ranaviruses have been implicated in recent declines in global amphibian populations. Compared with the family Iridoviridae, to which the genus Ranavirus belongs, ranaviruses have a wide host range in that species/strains are known to infect fish, amphibians and reptiles, presumably due to recent host-switching events. We used eight sequenced ranavirus genomes and two selection-detection methods (site based and branch based) to identify genes that exhibited signatures of positive selection, potentially due to the selective pressures at play during host switching. We found evidence of positive selection acting on four genes via the site-based method, three of which were newly acquired genes unique to ranavirus genomes. Using the branch-based method, we identified eight additional candidate genes that exhibited signatures of dN/dS (non-synonymous/synonymous substitution rate) >1 in the clade where intense host switching had occurred. We found that these branch-specific patterns of elevated dN/dS were enriched in a small group of viral genes that have been acquired most recently in the ranavirus genome, compared with core genes that are shared among all members of the family Iridoviridae. Our results suggest that the group of newly acquired genes in the ranavirus genome may have undergone recent adaptive changes that have facilitated interspecies and interclass host switching.