Boron nitride nanotubes (BNNTs) are intriguing nanomaterials with a wide range of potential biomedical applications. The assessment of BNNT interactions with biological systems, at both the cellular and subcellular levels, is an essential starting point for determining their bio-safety. We explore the effects of increasing concentrations of GC-BNNTs (0-100 μg/mL) on human vein endothelial cells (HUVECs), testing cell toxicity, proliferation, cytoskeleton integrity, cell activation and DNA damage. No significant changes were observed in cell viability, cytoskeleton integrity or DNA damage. Only a modest reduction in cell viability, tested by trypan blue assay, and the increased expression of vascular adhesion molecule-1, a marker of cell activation, were detected at the highest concentration used (100 μg/mL). Taken together, these findings indicate that GC-BNNTs do not affect endothelial cell biology, and are a promising first step in further investigation of their application potential in vascular targeting, imaging, and drug delivery.
Keywords: Boron nitride nanotubes; Cell activation; Endothelial cells; In vitro testing.
Copyright © 2013 Elsevier B.V. All rights reserved.