The effects of prolonged inspiratory time during one-lung ventilation: a randomised controlled trial

Anaesthesia. 2013 Sep;68(9):908-16. doi: 10.1111/anae.12318. Epub 2013 Jun 21.

Abstract

We evaluated the effects of a prolonged inspiratory time on gas exchange in subjects undergoing one-lung ventilation for thoracic surgery. One hundred patients were randomly assigned to Group I:E = 1:2 or Group I:E = 1:1. Arterial blood gas analysis and respiratory mechanics measurements were performed 10 min after anaesthesia induction, 30 and 60 min after initiation of one-lung ventilation, and 15 min after restoration of conventional two-lung ventilation. The mean (SD) ratio of the partial pressure of arterial oxygen to fraction of inspired oxygen after 60 min of one-lung ventilation was significantly lower in Group I:E = 1:2 compared with Group I:E = 1:1 (27.7 (13.2) kPa vs 35.2 (22.1) kPa, respectively, p = 0.043). Mean (SD) physiological dead space-to-tidal volume ratio after 60 min of one-lung ventilation was significantly higher in Group I:E = 1:2 compared with Group I:E = 1:1 (0.46 (0.04) vs 0.43 (0.04), respectively, p = 0.008). Median (IQR [range]) peak inspiratory pressure was higher in Group I:E = 1:2 compared with Group I:E = 1:1 after 60 min of one-lung ventilation (23 (22-25 [18-29]) cmH2O vs 20 (18-21 [16-27]) cmH2O, respectively, p < 0.001) and median (IQR [range]) mean airway pressure was lower in Group I:E = 1:2 compared with Group I:E = 1:1 (10 (8-11 [5-15]) cmH2O vs 11 (10-13 [5-16]) cmH2O, respectively, p < 0.001). We conclude that, compared with an I:E ratio of 1:2, an I:E ratio of 1:1 resulted in a modest improvement in oxygenation and decreased shunt fraction during one-lung ventilation.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Blood Gas Analysis / methods
  • Carbon Dioxide / blood
  • Female
  • Humans
  • Inhalation / physiology*
  • Male
  • Middle Aged
  • One-Lung Ventilation / methods*
  • Oxygen / blood
  • Pulmonary Gas Exchange
  • Respiratory Mechanics / physiology
  • Thoracic Surgical Procedures
  • Tidal Volume
  • Time Factors

Substances

  • Carbon Dioxide
  • Oxygen