Improving cytocompatibility of Co28Cr6Mo by TiO2 coating: gene expression study in human endothelial cells

J R Soc Interface. 2013 Jul 3;10(86):20130428. doi: 10.1098/rsif.2013.0428. Print 2013 Sep 6.

Abstract

Cobalt-based materials are widely used for coronary stents, as well as bone and joint implants. However, their use is associated with high corrosion incidence. Titanium alloys, by contrast, are more biocompatible owing to the formation of a relatively inactive titanium oxide (TiO2) layer on their surface. This study was aimed at improving Co28Cr6Mo alloy cytocompatibility via sol-gel TiO2 coating to reduce metal corrosion and metal ion release. Owing to their role in inflammation and tissue remodelling around an implant, endothelial cells present a suitable in vitro model for testing the biological response to metallic materials. Primary human endothelial cells seeded on Co28Cr6Mo showed a stress phenotype with numerous F-actin fibres absent on TiO2-coated material. To investigate this effect at the gene expression level, cDNA microarray analysis of in total 1301 genes was performed. Compared with control cells, 247 genes were expressed differentially in the cells grown on Co28Cr6Mo, among them genes involved in proliferation, oxidative stress response and inflammation. TiO2 coating reduced the effects of Co28Cr6Mo on gene expression in endothelial cells, with only 34 genes being differentially expressed. Quantitative real-time polymerase chain reaction and protein analysis confirmed microarray data for selected genes. The effect of TiO2 coating can be, in part, attributed to the reduced release of Co(2+), because addition of CoCl2 resulted in similar cellular responses. TiO2 coating of cobalt-based materials, therefore, could be used in the production of cobalt-based devices for cardiovascular and skeletal applications to reduce the adverse effects of metal corrosion products and to improve the response of endothelial and other cell types.

Keywords: biocompatibility; cobalt alloy; endothelial cell; gene expression; titanium oxide.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cells, Cultured
  • Chromium Alloys / chemistry
  • Chromium Alloys / pharmacology*
  • Coated Materials, Biocompatible / chemistry
  • Coated Materials, Biocompatible / pharmacology*
  • Endothelial Cells / metabolism*
  • Female
  • Gene Expression Profiling
  • Gene Expression Regulation*
  • Humans
  • Male
  • Materials Testing*
  • Oligonucleotide Array Sequence Analysis
  • Prostheses and Implants
  • Titanium / chemistry
  • Titanium / pharmacology*

Substances

  • Chromium Alloys
  • Coated Materials, Biocompatible
  • titanium dioxide
  • Titanium