There is a natural symbiosis between vergence and vestibular responses. Deficits in vergence can lead to vertigo, disequilibrium, and postural instability. This study examines both vergence eye movements in patients with idiopathic bilateral vestibular loss, and their standing balance in relation to vergence. Eleven patients participated in the study and 16 controls. Bilateral loss of vestibular function was objectified with many tests; only patients without significant response to caloric tests, to video head impulse tests and without vestibular evoked myogenic potentials were included in the study.
Vergence testing from 8 patients and 15 controls: A LED display with targets at 20, 40, and 100 cm along the median plane was used to elicit vergence eye movements, recorded with the IRIS device.
Standing balance 11 patients and 16 controls: Four conditions were run, each lasting 1 min: fixation of a LED at 40 cm (convergence of 9°), at 150 cm (convergence of 2.3°); this last condition was repeated with eyes closed. Comparison of the eyes closed-eyes open conditions at 150 cm allowed evaluation of the Romberg Quotient. In the forth condition, two LEDS, at 20 and at 100 cm, were light on, one after the other for 1 sec, causing the eyes to converge then diverge. Standing balance was recorded with an accelerometer placed at the back near the center of mass (McRoberts, Dynaport).
Vergence: Relative to controls, convergence eye movements in patients showed significantly lower accuracy, lower mean velocity, and saccade intrusions of significantly higher amplitude.
Balance: The normalized 90% area of body sway was significantly higher for patients than for controls for all conditions. Yet, similarly to controls, postural stability was better while fixating at near (sustained convergence) than at far, or while making active vergence movements. We argue that vestibular loss deteriorates convergence, but even deficient, convergence can be helpful for postural control.