The neuropeptide cholecystokinin octapeptide (CCK) is involved in a variety of brain functions. In the hippocampus, most CCK is released from CCK-positive (CCK+) neurons, but the effects of CCK on CCK+ neurons are poorly understood. We employed primary hippocampal cultures to explore the modulatory effect of CCK on CCK+ neurons. CCK-8S (0.2 μM) was added to the culture medium from day in vitro 2 (DIV-2) to DIV-11. An adenovirus integrated with the CCK promoter was used to label CCK+ neurons. Whole-cell patch clamp recording was carried on to record the electrophysiology properties. The results show that: (1) CCK-8S significantly decreased membrane capacity but increased the membrane resistance (Rm) of CCK+ neurons, (2) CCK-8S increased action potential (AP) firing frequency of CCK+ neurons but did not affect the firing pattern, (3) CCK-8S facilitated CCK+ neuron excitatory synaptic transmission but attenuated inhibitory synaptic transmission, and (4) the expression of postsynaptic density-95 (PSD-95) in cultured hippocampal neurons was elevated by CCK-8S treatment. Our results demonstrate that CCK-8S significantly alters the membrane electrophysiological characteristics and synaptic activity of cultured hippocampal CCK+ neurons. These findings may enhance our understanding of the modulatory effect of CCK in the brain.
Keywords: CCK-positive neuron; Cholecystokinin; Hippocampus; Interneuron; Whole-cell patch clamp.
Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.