Cardiorespiratory autonomic control is in tight interaction with an intracardiac neural network modulating sinus node function. To gain novel mechanistical insights and to investigate possible novel targets concerning the treatment of inadequate sinus tachycardia, we aimed to characterize functionally and topographically the right atrial neural network modulating sinus node function. In 16 sheep 3-dimensional electro-anatomical mapping of the right atrium was performed. In five animals additionally magnetically steered remote navigation was used. Selective stimulation of nerve fibers was conducted by applying high frequency (200 Hz) electrical impulses within the atrial refractory period. Histological analysis of whole heart preparations by acetylcholinesterase staining was performed and compared to the acquired neuroanatomical mapping.We found that neural stimulation in the cranial part of the right atrium, within a perimeter around the sinus node area, elicited predominantly shortening of the sinus cycle length of -20.3 ± 10.1 % (n = 80, P < 0.05). Along the course of the crista terminalis atrial premature beats (n = 117) and atrial fibrillation (n = 123) could be induced. Catheter stability was excellent during remote catheter navigation. Histological work-up (n = 4) was in accord with the distribution of neurostimulation sites. Ganglions were mainly innervated by the dorsal right-atrial subplexus, with substantial additional input from the ventral right atrial subplexus. In conclusion, our findings suggest a functional and topographic concordance of right atrial neural structures inducing sinus tachycardia. This might open up new avenues in the treatment of heart rate related disorders.