Background: Women with mutations in BRCA1 or BRCA2 are at high risk of developing breast cancer and, in British Columbia, Canada, are offered screening with both magnetic resonance imaging (MRI) and mammography to facilitate early detection. MRI is more sensitive than mammography but is more costly and produces more false positive results. The purpose of this study was to calculate the cost-effectiveness of MRI screening for breast cancer in BRCA1/2 mutation carriers in a Canadian setting.
Methods: We constructed a Markov model of annual MRI and mammography screening for BRCA1/2 carriers, using local data and published values. We calculated cost-effectiveness as cost per quality-adjusted life-year gained (QALY), and conducted one-way and probabilistic sensitivity analysis.
Results: The incremental cost-effectiveness ratio (ICER) of annual mammography plus MRI screening, compared to annual mammography alone, was $50,900/QALY. After incorporating parameter uncertainty, MRI screening is expected to be a cost-effective option 86% of the time at a willingness-to-pay of $100,000/QALY, and 53% of the time at a willingness-to-pay of $50,000/QALY. The model is highly sensitive to the cost of MRI; as the cost is increased from $200 to $700 per scan, the ICER ranges from $37,100/QALY to $133,000/QALY.
Conclusions: The cost-effectiveness of using MRI and mammography in combination to screen for breast cancer in BRCA1/2 mutation carriers is finely balanced. The sensitivity of the results to the cost of the MRI screen itself warrants consideration: in jurisdictions with higher MRI costs, screening may not be a cost-effective use of resources, but improving the efficiency of MRI screening will also improve cost-effectiveness.