Undersampling k-space data is an efficient way to speed up the magnetic resonance imaging (MRI) process. As a newly developed mathematical framework of signal sampling and recovery, compressed sensing (CS) allows signal acquisition using fewer samples than what is specified by Nyquist-Shannon sampling theorem whenever the signal is sparse. As a result, CS has great potential in reducing data acquisition time in MRI. In traditional compressed sensing MRI methods, an image is reconstructed by enforcing its sparse representation with respect to a basis, usually wavelet transform or total variation. In this paper, we propose an improved compressed sensing-based reconstruction method using the complex double-density dual-tree discrete wavelet transform. Our experiments demonstrate that this method can reduce aliasing artifacts and achieve higher peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index.