Splatterplots: overcoming overdraw in scatter plots

IEEE Trans Vis Comput Graph. 2013 Sep;19(9):1526-38. doi: 10.1109/TVCG.2013.65.

Abstract

We introduce Splatterplots, a novel presentation of scattered data that enables visualizations that scale beyond standard scatter plots. Traditional scatter plots suffer from overdraw (overlapping glyphs) as the number of points per unit area increases. Overdraw obscures outliers, hides data distributions, and makes the relationship among subgroups of the data difficult to discern. To address these issues, Splatterplots abstract away information such that the density of data shown in any unit of screen space is bounded, while allowing continuous zoom to reveal abstracted details. Abstraction automatically groups dense data points into contours and samples remaining points. We combine techniques for abstraction with perceptually based color blending to reveal the relationship between data subgroups. The resulting visualizations represent the dense regions of each subgroup of the data set as smooth closed shapes and show representative outliers explicitly. We present techniques that leverage the GPU for Splatterplot computation and rendering, enabling interaction with massive data sets. We show how Splatterplots can be an effective alternative to traditional methods of displaying scatter data communicating data trends, outliers, and data set relationships much like traditional scatter plots, but scaling to data sets of higher density and up to millions of points on the screen.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.