Muscle fibers do not normally express major histocompatibility complex class I (MHC-I) molecules, and their reexpression is a hallmark of inflammatory myopathies. It has been shown in mice that overexpression of MHC-I induces a poorly inflammatory myositis accompanied by the unfolded protein response (UPR), but it is unclear whether it is attributable to T-cell-mediated MHC-I-dependent immune responses or to MHC-I forced expression per se. Indeed, besides presenting antigenic peptides to CD8(+) T cells, MHC-I may also possibly exert nonimmunologic, yet poorly understood pathogenic effects. Thus, we investigated the pathogenicity of MHC-I expression in muscle independently of its immune functions. HT transgenic mice that conditionally overexpress H-2K(b) in muscle were bred to an immunodeficient Rag2(-/-) background. The muscle proteome was analyzed by label-free high-resolution protein quantitation and Western blot. Despite the absence of adaptive immunity, HT Rag2(-/-) mice developed a very severe myopathy associated with the cytoplasmic accumulation of H-2K(b) molecules. The UPR was manifest by up-regulation of characteristic proteins. In humans, we found that HLA class I molecules not only were expressed at the sarcolemma but also could accumulate intracellularly in some patients with inclusion body myositis. Accordingly, the UPR was triggered as a function of the degree of HLA accumulation in myofibers. Hence, reexpression of MHC-I in normally negative myofibers exerts pathogenic effects independently of its immune function.
Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.