Non-invasive endocrine monitoring with minimally invasive biological samples, such as urine, is being used widely for conservation biology research on amphibians. Currently, it is unknown how closely urinary measurements correspond with the traditional serum hormone measurements. We compared urinary and serum concentrations of corticosterone (CORT) and testosterone (T) in adult male cane toads (Rhinella marina) using a standard capture and handling (short-term stressor) protocol. Free-living male cane toads were captured and sampled for baseline urine (0h) with a second urine sample taken at 0.5h and hourly between 1 and 8h. A single blood sample was collected from each toad after the final urine sampling and capture handling. The mean serum CORT concentration increased between 0 and 0.5h, reaching the highest level between 6 and 8h. The mean urinary CORT concentration increased with a lag-time of 1h and continued to increase up to 8h. The mean level of serum T decreased between 0 and 7h and increased between 7 and 8h. Mean urinary T concentration decreased with a lag-time of 0.5h. Urinary T levels did not change between 4 and 8h. Mean serum T levels reached 50% of the original 0h value at 1h while mean serum CORT levels reached 200% of the original 0h value within 0.5h. Mean urinary T levels reached 50% of the original 0h value within 3h while mean urinary CORT levels reached 200% of the original 0h value within 3h. The inter-individual variation in baseline serum and urinary CORT and T levels were highly comparable, suggesting that baseline urine sample provides a reliable indicator of the physiological status of the animal. Overall, the results have demonstrated that urine sampling and standard capture handling protocol provide reliable measures of baseline corticosterone and testosterone, as well as short-term stress hormone responses in amphibians.
Keywords: Conservation physiology; Corticosterone; Serum; Testosterone; Urine sampling.
Copyright © 2013 Elsevier Inc. All rights reserved.