Cardiac expression of human type 2 iodothyronine deiodinase increases glucose metabolism and protects against doxorubicin-induced cardiac dysfunction in male mice

Endocrinology. 2013 Oct;154(10):3937-46. doi: 10.1210/en.2012-2261. Epub 2013 Jul 16.

Abstract

Altered glucose metabolism in the heart is an important characteristic of cardiovascular and metabolic disease. Because thyroid hormones have major effects on peripheral metabolism, we examined the metabolic effects of heart-selective increase in T3 using transgenic mice expressing human type 2 iodothyronine deiodinase (D2) under the control of the α-myosin heavy chain promoter (MHC-D2). Hyperinsulinemic-euglycemic clamps showed normal whole-body glucose disposal but increased hepatic insulin action in MHC-D2 mice as compared to wild-type (WT) littermates. Insulin-stimulated glucose uptake in heart was not altered, but basal myocardial glucose metabolism was increased by more than two-fold in MHC-D2 mice. Myocardial lipid levels were also elevated in MHC-D2 mice, suggesting an overall up-regulation of cardiac metabolism in these mice. The effects of doxorubicin (DOX) treatment on cardiac function and structure were examined using M-mode echocardiography. DOX treatment caused a significant reduction in ventricular fractional shortening and resulted in more than 50% death in WT mice. In contrast, MHC-D2 mice showed increased survival rate after DOX treatment, and this was associated with a six-fold increase in myocardial glucose metabolism and improved cardiac function. Myocardial activity and expression of AMPK, GLUT1, and Akt were also elevated in MHC-D2 and WT mice following DOX treatment. Thus, our findings indicate an important role of thyroid hormone in cardiac metabolism and further suggest a protective role of glucose utilization in DOX-mediated cardiac dysfunction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases / biosynthesis
  • AMP-Activated Protein Kinases / genetics
  • AMP-Activated Protein Kinases / metabolism
  • Animals
  • Antibiotics, Antineoplastic / adverse effects*
  • Doxorubicin / adverse effects*
  • Glucose / metabolism*
  • Glucose Clamp Technique
  • Glucose Transporter Type 1 / biosynthesis
  • Glucose Transporter Type 1 / genetics
  • Glucose Transporter Type 1 / metabolism
  • Heart Ventricles / diagnostic imaging
  • Heart Ventricles / drug effects*
  • Heart Ventricles / metabolism
  • Heart Ventricles / physiopathology
  • Humans
  • Insulin Resistance*
  • Iodide Peroxidase / biosynthesis*
  • Iodide Peroxidase / genetics
  • Iodide Peroxidase / metabolism
  • Iodothyronine Deiodinase Type II
  • Lipid Metabolism
  • Liver / metabolism
  • Male
  • Mice
  • Mice, Transgenic
  • Proto-Oncogene Proteins c-akt / biosynthesis
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • Survival Analysis
  • Triiodothyronine / metabolism
  • Ultrasonography
  • Ventricular Dysfunction / chemically induced*
  • Ventricular Dysfunction / diagnostic imaging
  • Ventricular Dysfunction / metabolism
  • Ventricular Dysfunction / physiopathology

Substances

  • Antibiotics, Antineoplastic
  • Glucose Transporter Type 1
  • Slc2a1 protein, rat
  • Triiodothyronine
  • Doxorubicin
  • Iodide Peroxidase
  • Akt1 protein, rat
  • Proto-Oncogene Proteins c-akt
  • AMP-Activated Protein Kinases
  • Glucose