Statistical analysis of peptide-induced graded and all-or-none fluxes in giant vesicles

Biophys J. 2013 Jul 16;105(2):432-43. doi: 10.1016/j.bpj.2013.05.055.

Abstract

Antimicrobial, cytolytic, and cell-penetrating peptides induce pores or perturbations in phospholipid membranes that result in fluxes of dyes into or out of lipid vesicles. Here we examine the fluxes induced by four of these membrane-active peptides in giant unilamellar vesicles. The type of flux is determined from the modality of the distributions of vesicles as a function of their dye content using the statistical Hartigan dip test. Graded and all-or-none fluxes correspond to unimodal and bimodal distributions, respectively. To understand how these distributions arise, we perform Monte Carlo simulations of peptide-induced dye flux into vesicles using a very simple model. The modality of the distributions depends on the rate constants of pore opening and closing, and dye flux. If the rate constants of pore opening and closing are both much smaller than that of dye flux through the pore, all-or-none influx occurs. However, if one of them, especially the rate constant for pore opening, increases significantly relative to the flux rate constant, the process becomes graded. In the experiments, we find that the flux type is the same in giant and large vesicles, for all peptides except one. But this one exception indicates that the flux type cannot be used to unambiguously predict the mechanism of membrane permeabilization by the peptides.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biological Transport
  • Cell-Penetrating Peptides / metabolism*
  • Kinetics
  • Monte Carlo Method
  • Unilamellar Liposomes / metabolism*

Substances

  • Cell-Penetrating Peptides
  • Unilamellar Liposomes