In surface science, water adsorption on hydrophilic samples is usually invoked, addressing their nanoscale experimental effects in scanning probe microscopy, especially when water condensates between tip and sample. Here we study by means of a numerical hybrid method the effect of water bridge formation in near field imaging. We show how this nanometric water neck plays an important role not only in the optical image, producing a high contrast at hydrophilic patches, but also in the tip-sample distance control. This work contributes with a new methodology able to retrieve the original application of SNOM, using it as an instrument to study the optical properties of matter overcoming the diffraction limit. It extends the application of SNOM to study the hydrophilic character of polymeric and biological samples, taking advantage of ubiquitous effect of humidity when operating in ambient condition.
Keywords: FDTD; Hydrophilic characterization; Lattice gas; Nanophotonics; Optofluidics; SNOM; Water condensation.
© 2013 Elsevier B.V. All rights reserved.