BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency

Clin Cancer Res. 2013 Sep 15;19(18):5003-15. doi: 10.1158/1078-0432.CCR-13-1391. Epub 2013 Jul 23.

Abstract

Purpose: PARP1/2 inhibitors are a class of anticancer agents that target tumor-specific defects in DNA repair. Here, we describe BMN 673, a novel, highly potent PARP1/2 inhibitor with favorable metabolic stability, oral bioavailability, and pharmacokinetic properties.

Experimental design: Potency and selectivity of BMN 673 was determined by biochemical assays. Anticancer activity either as a single-agent or in combination with other antitumor agents was evaluated both in vitro and in xenograft cancer models.

Results: BMN 673 is a potent PARP1/2 inhibitor (PARP1 IC50 = 0.57 nmol/L), but it does not inhibit other enzymes that we have tested. BMN 673 exhibits selective antitumor cytotoxicity and elicits DNA repair biomarkers at much lower concentrations than earlier generation PARP1/2 inhibitors (such as olaparib, rucaparib, and veliparib). In vitro, BMN 673 selectively targeted tumor cells with BRCA1, BRCA2, or PTEN gene defects with 20- to more than 200-fold greater potency than existing PARP1/2 inhibitors. BMN 673 is readily orally bioavailable, with more than 40% absolute oral bioavailability in rats when dosed in carboxylmethyl cellulose. Oral administration of BMN 673 elicited remarkable antitumor activity in vivo; xenografted tumors that carry defects in DNA repair due to BRCA mutations or PTEN deficiency were profoundly sensitive to oral BMN 673 treatment at well-tolerated doses in mice. Synergistic or additive antitumor effects were also found when BMN 673 was combined with temozolomide, SN38, or platinum drugs.

Conclusion: BMN 673 is currently in early-phase clinical development and represents a promising PARP1/2 inhibitor with potentially advantageous features in its drug class.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blotting, Western
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Cell Proliferation / drug effects
  • DNA Repair-Deficiency Disorders / drug therapy*
  • Drug Resistance, Neoplasm / drug effects*
  • Female
  • Flow Cytometry
  • Humans
  • Mice
  • Mice, Nude
  • Phthalazines / pharmacology*
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerase Inhibitors*
  • Poly(ADP-ribose) Polymerases / genetics
  • Poly(ADP-ribose) Polymerases / metabolism
  • RNA, Small Interfering / genetics
  • Rats
  • Tumor Cells, Cultured
  • Tumor Stem Cell Assay
  • Xenograft Model Antitumor Assays

Substances

  • Phthalazines
  • Poly(ADP-ribose) Polymerase Inhibitors
  • RNA, Small Interfering
  • talazoparib
  • PARP1 protein, human
  • PARP2 protein, human
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerases