Introduction: Metabolic dysfunction is one of the hallmarks of sepsis yet little is known about local changes in key organs such as the heart. The aim of this study was to compare myocardial metabolic changes by direct measurements of substrates, such as glucose, lactate and pyruvate, using microdialysis (MD) in in-vivo porcine endotoxemic and hemorrhagic shock. To assess whether these changes were specific to the heart, we simultaneously investigated substrate levels in skeletal muscle.
Methods: Twenty-six female pigs were randomized to three groups: control (C) n = 8, endotoxemic shock (E) n = 9 and hemorrhagic shock (H) n = 9. Interstitial myocardial pyruvate, lactate and glucose were measured using MD. Skeletal muscle MD was also performed in all three groups.
Results: Marked decreases in myocardial glucose were observed in the E group but not in the H group compared to controls (mean difference (CI) in mmol/L: C versus E -1.5(-2.2 to -0.8), P <0.001; H versus E -1.1(-1.8 to -0.4), P = 0.004; C versus H -0.4(-1.1 to 0.3), P = 0.282). Up to four-fold increases in myocardial pyruvate and three-fold increases in lactate were seen in both shock groups with no differences between the two types of shock. There was no evidence of myocardial anaerobic metabolism, with normal lactate:pyruvate (L:P) ratios seen in all animals regardless of the type of shock.
Conclusions: Endotoxemia, but not hemorrhage, induces a rapid decrease of myocardial glucose levels. Despite the decrease in glucose, myocardial lactate and pyruvate concentrations were elevated and not different than in hemorrhagic shock. In skeletal muscle, substrate patterns during endotoxemic shock mimicked those seen in myocardium. During hemorrhagic shock the skeletal muscle response was characterized by a lack of increase in pyruvate and higher L:P ratios. Hence, metabolic patterns in the myocardium during endotoxemic shock are different than those seen during hemorrhagic shock. Skeletal muscle and myocardium displayed similar substrate patterns during endotoxemic shock but differed during hemorrhagic shock.