The objective of this work was to improve the understanding the influence of the methyl group at different positions of imidazolium ring on the adsorption behaviors of imidazole-modified silica adsorbents. Five adsorbents named as SilprImCl, SilprM₁ImCl, SilprM₂ImCl, SilprM₄ImCl and SilprM₁M₂ImCl were synthesized using imidazole, 1-methylimidazole, 2-methylimidazole, 4-methylimidazole and 1,2-dimethylimidazole, respectively. These adsorbents were characterized by scanning electron microscope, infrared spectra, thermogravimetric analysis, elemental analysis and BET analysis. Firstly, phenol, 2-nitrophenol (2-NP), 3-nitrophenol (3-NP), 4-nitrophenol (4-NP) and 2,4-dinitrophenol (2,4-DNP) were used as adsorbates to investigate the selectivity of SilprImCl and its adsorption capacities followed the order of 2,4-DNP≫4-NP>2-NP≫3-NP>phenol. Therefore, 2,4-DNP was used to investigate the adsorption behaviors of the five adsorbents. It was inferred that the adsorbents are of primary anion-exchange and electrostatic nature. The electrostatic nature was affected significantly by the methyl group at different positions of imidazolium ring. The adsorbed amounts of 2,4-DNP decreased in the order of: SilprM₁M₂ImCl≈SilprM₁ImCl>SilprM4ImCl>SilprM₂ImCl>SilprImCl. The adsorption-elution experiments indicated that 2,4-DNP can be removed from aqueous solutions by a SilprM₄ImCl packed column and the recovery of 91.6% was obtained. The adsorbent could be regenerated and reused ten times at least by simple washings with HCl and water in turn.
Keywords: 2,4-Dinitrophenol; Adsorption; Ionic liquid; Silica.
Copyright © 2013 Elsevier B.V. All rights reserved.