Objective: Interleukin (IL)-17A producing CD4 T-cells (TH-17 cells) are implicated in rheumatoid arthritis (RA). IL-6/STAT3 signalling drives TH-17 cell differentiation, and hyperactive gp130/STAT3 signalling in the gp130F/F mouse promotes exacerbated pathology. Conversely, STAT1-activating cytokines (eg, IL-27, IFN-γ) inhibit TH-17 commitment. Here, we evaluate the impact of STAT1 ablation on TH-17 cells during experimental arthritis and relate this to IL-17A-associated pathology.
Methods: Antigen-induced arthritis (AIA) was established in wild type (WT), gp130F/F mice displaying hyperactive gp130-mediated STAT signalling and the compound mutants gp130F/F:Stat1-/- and gp130F/F:Il17a-/- mice. Joint pathology and associated peripheral TH-17 responses were compared.
Results: Augmented gp130/STAT3 signalling enhanced TH-17 commitment in vitro and exacerbated joint pathology. Ablation of STAT1 in gp130F/F mice (gp130F/F:Stat1-/-) promoted the hyperexpansion of TH-17 cells in vitro and in vivo during AIA. Despite this heightened peripheral TH-17 cell response, disease severity and the number of joint-infiltrating T-cells were comparable with that of WT mice. Thus, gp130-mediated STAT1 activity within the inflamed synovium controls T-cell trafficking and retention. To determine the contribution of IL-17A, we generated gp130F/F:IL-17a-/- mice. Here, loss of IL-17A had no impact on arthritis severity.
Conclusions: Exacerbated gp130/STAT-driven disease in AIA is associated with an increase in joint infiltrating T-cells but synovial pathology is IL-17A independent.
Keywords: Cytokines; Inflammation; Rheumatoid Arthritis; T Cells.