Rodent apoA-IV is expressed predominantly in small intestine and also expressed to a small extent in liver and hypothalamus. ApoA-IV has been shown to inhibit food intake in rats when injected centrally. In the current study, we hypothesize that a specific sequence within rat apoA-IV is responsible for mediating the anorectic effect. We use a bacterial expression system to generate truncation mutants (Δ249-371, Δ117-371 and Δ1-61) of rat apoA-IV and assess the ability of various regions of the molecule to inhibit food intake. The results indicate that a responsible sequence exists within the N-terminal 61 amino acids of rat apoA-IV. Synthetic peptides (1-30 EVTSDQVANVMWDYFTQLSNNAKEAVEQLQ, 1-15 EVTSDQVANVMWDYF and 17-30 QLSNNAKEAVEQLQ) were used to specify the region in between residues 1 and 30. A 14-mer peptide (17-30) encompassing this sequence was capable of reducing food intake in a dose-dependent manner whereas a peptide designed on a more C-terminal region (211-232) of apoA-IV (QEKLNHQMEGLAFQMKKNAEEL) failed to exhibit the dose-dependent anorectic effect. The isolation of this sequence provides a valuable tool for future work directed at identifying apoA-IV binding proteins and is a key step for exploring the potential of therapeutic manipulation of food intake via this pathway.
Keywords: Apolipoprotein A-IV; Food intake; Truncation mutation.
© 2013.