Purpose of review: There has been significant progress in our understanding of the structural and functional properties and regulation of the electrogenic sodium bicarbonate cotansporter NBCe1, a membrane transporter that plays a key role in renal acid-base physiology. The NBCe1 variant NBCe1-A mediates basolateral electrogenic sodium-base transport in the proximal tubule and is critically required for transepithelial bicarbonate absorption. Mutations in NBCe1 cause autosomal recessive proximal renal tubular acidosis (pRTA). The review summarizes recent advances in this area.
Recent findings: A topological model of NBCe1 has been established that provides a foundation for future structure-functional studies of the transporter. Critical residues and regions have been identified in NBCe1 that play key roles in its structure, function (substrate transport, electrogenicity) and regulation. The mechanisms of how NBCe1 mutations cause pRTA have also recently been elucidated.
Summary: Given the important role of proximal tubule transepithelial bicarbonate absorption in systemic acid-base balance, a clear understanding of the structure-functional properties of NBCe1 is a prerequisite for elucidating the mechanisms of defective transepithelial bicarbonate transport in pRTA.